Automatic Unsupervised Segmentation of Retinal Vessels Using Self-Organizing Maps and K-Means Clustering

نویسندگان

  • Carmen Alina Lupascu
  • Domenico Tegolo
چکیده

In this paper an automatic unsupervised method for the segmentation of retinal vessels is proposed. A Self-Organizing Map is trained on a portion of the same image that is tested and K-means clustering algorithm is used to divide the map units in 2 classes. The entire image is again input for the Self-Organizing Map, and the class of each pixel will be the class of the best matching unit on the Self-Organizing Map. Finally, the vessel network is post-processed using a hill climbing strategy on the connected components of the segmented image. The experimental evaluation on the publicly available DRIVE database shows accurate extraction of vessels network and a good agreement between our segmentation and the ground truth. The mean accuracy, 0.9459 with a standard deviation of 0.0094, is outperforming the manual segmentation rates obtained by other widely used unsupervised methods. A good kappa value of 0.6562 is inline with state-of-the-art supervised and unsupervised approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

Learning the number of clusters in Self Organizing Map

The Self-Organizing Map (SOM: Kohonen (1984, 2001)) is a neuro-computational algorithm to map high-dimensional data to a two-dimensional space through a competitive and unsupervised learning process. Self-Organizing Maps differ from other artificial neural networks in the sense that they use a neighborhood function to preserve the topological properties of the input space. This unsupervised lea...

متن کامل

Automated Knowledge Acquisition Based on Unsupervised Neural Network and Expert System Paradigms

-Self-organizing maps are an unsupervised neural network model that lends itself to the cluster analysis of high dimensional input data. However, interpreting a trained map proves to be difficult because the features responsible for specific cluster assignment are not evident from resulting map representation. Paper presents an approach for automated knowledge acquisition system using Kohonen s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010